chelate around one of the amino hydrogens (Table 3). Therefore a significant difference ($\sim 10^{\circ}$) between the angles $\mathrm{C}(15)-\mathrm{C}(26)-\mathrm{C}(25)\left[125.5(4)^{\circ}\right]$ and $\mathrm{C}(13)-\mathrm{C}(36)-\mathrm{N}(31)\left[115 \cdot 9(4)^{\circ}\right]$ is also observed.

Two other kinds of hydrogen bonds (Table 3) exist in the cell packing, firstly between the bromide ion and the amino nitrogen $\mathrm{N}(16)$, and secondly between the bromide ion and the oxygen of a water molecule. These different hydrogen bridges may be classified as intra- and intermolecular, respectively.

CF thanks the 'Commission des Communautés Européennes' for financial support between March 1989 and February 1990. Dr E. Müller is thanked for very helpful discussions.

References

Dallacker, F. (1960). Monatsh. Chem. 91, 294.
Engelfriet, D. W., Groeneveld, W. L. \& Nap, G. M. (1980). Z. Naturforsch. Teil A, 35, 1387-1389.
Geldard, J. F. \& Lions, F. (1965). J. Org. Chem. 30, 318.
Graaff, R. A. G. de (1973). Acta Cryst. A29, 298-301.
Haasnoot, J. G. \& Groeneveld, W. L. (1979). Z. Naturforsch. Teil B, 34, 1500-1506.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kel, F. S., de Graaff, R. A. G., Haasnoot, J. G. \& Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093-2097.

Kinneging, A. J. \& de Graaff, R. A. G. (1984). J. Appl. Cryst. 17, 364-366.
Prins, R., Birker, P. J. M. W. L., Haasnoot, J. G., Verschoor, G. C. \& Reediu, J. (1985). J. Inorg. Chem. 24, 4129.

Vos, G., Haasnoot, J. G., Verschoor, G. C., Reedij, J. \& Schaminee, P. E. L. (1985). Inorg. Chim. Acta, 105, 31-39.

Structure of a Copper(II) Complex of the Deprotonated Anion of 3,3,6,6,9,9-Hexamethyl-4,8-diazaundecane-2,10-dione Dioxime

By Tsong-Jen Lee, Yian Chang and Chung-Sun Chung
National Tsing Hua University, Hsinchu, Taiwan 30043
and Yun-Ming Wang
Institute of Nuclear Energy Research, PO Box 3, Lung-Tan 32500, Taiwan

(Received 19 February 1990; accepted 24 April 1990)

Abstract

Aqua(3,3,6,6,9,9-hexamethyl-4,8-diaza-undecane-2,10-dione dioximato)copper(II) perchlorate, $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right), \quad M_{r}=480 \cdot 44$, monoclinic, $P 2_{1} / c, a=7.918$ (1), $b=20.265$ (2), $c=$ 13.707 (4) $\AA, \beta=104.34$ (2) ${ }^{\circ}, U=2130 \cdot 7$ (2) $\AA^{3}, Z=$ $4, D_{x}=1.498 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Мо $K \alpha)=0.710 б 9 \AA, \mu=$ $1 \cdot 19 \mathrm{~mm}^{-1}, F(000)=1011.79$, room temperature, final $R=0.035, w R=0.030$ for 2924 observed reflections. The coordination about $\mathrm{Cu}^{\mathrm{II}}$ is distorted square pyramidal with the deprotonated diazadioxime equatorial and the O atom of the aqua group axial. The Cu atom is significantly ($0.202 \AA$) out of the plane of the four nitrogens and towards the O atom of the aqua group. This O atom forms hydrogen bonds with the neighbouring oxime and perchlorate O atoms. The C -methyl groups in this complex impose significant constraint resulting in an increase of the N (amine) $-M-\mathrm{N}$ (amine) angle, decrease of the N (amine) $-M-\mathrm{N}$ (oxime) angles and elongation of the $\mathrm{O} \cdots \mathrm{O}$ distance. The important bond distances are $\mathrm{Cu}-\mathrm{O}=2 \cdot 321$ (3), average $\mathrm{Cu}-\mathrm{N}$ (oxime) $=1.953(3)$, average $\mathrm{Cu}-\mathrm{N}($ amine $)=$ 0108-2701/90/122360-04803.00

1.993 (3) and $\mathrm{O} \cdots \mathrm{O}=2.509$ (5) \AA for the intramolecular hydrogen bond.

Introduction. The deprotonated diazadioxime metal complexes allow a comprehensive structural study of the variation in intramolecular hydrogen bonding with $\mathrm{O} \cdots \mathrm{O}$ distance for short hydrogen bonds (Gavel \& Schlemper, 1979). Previously, structural studies have indicated that the $\mathrm{O} \cdots \mathrm{O}$ distance varies as a function of: (1) the size of the metal ion, (2) the constraint imposed by the methylene carbons bridging the amine N atoms, and (3) changing from an $s p^{3}$ amine nitrogen to an $s p^{2}$ imine nitrogen (Liss \& Schlemper, 1975; Pal, Murmann, Schlemper, Fair \& Hussain, 1986). The present study was undertaken to examine the steric effect of the copper(II) complex of deprotonated diazadioxime.

Experimental. The ligand, 3,3,6,6,9,9-hexamethyl-4,8-diazaundecane-2,10-dione dioxime (6,6-Me ${ }_{2}$ PnAO), was prepared as described by Murmann (1957, 1958) and Vassian \& Murmann (1967). Prepa© 1990 International Union of Crystallography

Table 1. Atomic positional parameters and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$B_{\text {iso }}=\frac{8}{3} \pi^{2}\left(\mathbf{u}_{11}+\mathbf{u}_{22}+\mathbf{u}_{33}\right)$.				
	x	y	z	$B_{\text {iso }}$
Cu	0.72664 (6)	0.46484 (2)	$0 \cdot 12128$ (3)	$2 \cdot 12$ (2)
Cl	$1 \cdot 1998$ (1)	0.34646 (5)	0.43181 (7)	$3 \cdot 28$ (5)
$\mathrm{O}(1)$	0.7454 (3)	0.5354 (1)	-0.0605 (2)	3.0 (1)
$\mathrm{O}(2)$	$0 \cdot 6579$ (3)	0.4165 (1)	-0.0864 (2)	$3 \cdot 4$ (1)
$\mathrm{O}(3)$	$1 \cdot 1300$ (4)	$0 \cdot 4063$ (1)	$0 \cdot 3842$ (2)	$4 \cdot 9$ (2)
$\mathrm{O}(4)$	$1 \cdot 2558$ (5)	$0 \cdot 3067$ (2)	0.3622 (3)	8.7 (2)
$\mathrm{O}(5)$	1.3444 (4)	$0 \cdot 3608$ (2)	0.5131 (2)	$6 \cdot 3$ (2)
$\mathrm{O}(6)$	1.0679 (5)	0.3126 (2)	0.4656 (3)	$8 \cdot 5$ (2)
$\mathrm{O}(7)$	1.0149 (3)	0.4302 (1)	0.1665 (2)	$3 \cdot 4$ (1)
$\mathrm{N}(1)$	0.7697 (3)	0.5399 (1)	0.0418 (2)	$2 \cdot 3$ (1)
N(2)	0.7492 (3)	0.5349 (1)	0.2249 (2)	$2 \cdot 0$ (1)
N(3)	0.6274 (4)	0.3936 (1)	$0 \cdot 1914$ (2)	$2 \cdot 1$ (1)
N(4)	0.6582 (4)	$0 \cdot 4010$ (2)	0.0116 (2)	$2 \cdot 5$ (1)
C(1)	$0 \cdot 8375$ (5)	0.5914 (2)	0.0890 (3)	$2 \cdot 4$ (2)
C(2)	0.9028 (8)	0.6487 (2)	0.0418 (3)	$4 \cdot 2$ (2)
C(3)	0.8562 (5)	0.5917 (2)	$0 \cdot 2028$ (2)	$2 \cdot 3$ (2)
C(4)	0.7856 (6)	0.6555 (2)	$0 \cdot 2371$ (3)	$3 \cdot 9$ (2)
C(5)	1.0507 (5)	0.5841 (2)	$0 \cdot 2554$ (3)	$3 \cdot 5$ (2)
C(6)	0.7944 (4)	0.5117 (2)	0.3313 (2)	$2 \cdot 2$ (2)
C(7)	0.6637 (4)	0.4608 (2)	0.3518 (2)	2.5 (2)
C(8)	0.7178 (5)	0.4485 (2)	0.4663 (2)	$3 \cdot 4$ (2)
$\mathrm{C}(9)$	0.4768 (5)	0.4881 (2)	0.3228 (3)	$3 \cdot 4$ (2)
C(10)	0.6791 (5)	0.3933 (2)	$0 \cdot 3046$ (2)	2.6 (2)
C(11)	$0 \cdot 6393$ (5)	$0 \cdot 3270$ (2)	0.1434 (3)	2.7 (2)
C(12)	$0 \cdot 8092$ (6)	$0 \cdot 2915$ (2)	$0 \cdot 1913$ (3)	4.0 (2)
C(13)	$0 \cdot 4860$ (6)	$0 \cdot 2835$ (2)	$0 \cdot 1521$ (3)	$4 \cdot 5$ (2)
C(14)	0.6363 (5)	$0 \cdot 3411$ (2)	0.0324 (3)	$2 \cdot 8$ (2)
C(15)	$0 \cdot 6184$ (7)	$0 \cdot 2854$ (2)	-0.0413 (3)	$4 \cdot 5$ (2)

ration of the title complex: A hot methanol solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mmol}$ in 30 ml$)$ was added to a hot methanol solution of the ligand (20 mmol in 20 ml). Dark red crystals were obtained as the solution was cooled. The crystals were collected by filtration, washed with diethyl ether and dried in air.

Recrystallized from methanol solution. CAD-4 diffractometer, graphite monochromator, dark red crystal ($0.30 \times 0.5 \times 0.5 \mathrm{~mm}$) used for data collection, unit-cell parameters from 24 reflections with 15 $<\theta<30^{\circ}$, data collected by $\omega-2 \theta$ scans with scan parameters $2(0.8+0.35 \tan \theta)^{\circ}$ and with scan speed $20 / 10$ to $20 / 3^{\circ} \mathrm{min}^{-1}$, three standard reflections ($\overline{413}$, $2 \overline{7} 2$ and 272) checked every 2 h varied within $2 \sigma(I)$. Max. $(\sin \theta / \lambda)=0.7035 \AA^{-1}(-9 \leq h \leq 9,0 \leq k \leq 24$, $0 \leq l \leq 24$), 4324 reflections were collected, 2924 were significant with $I>2 \cdot 5 \sigma(I)$. Empirical absorption correction was based on azimuthal rotation from reflections $040, \overline{1}, \overline{1}, \overline{1}$ and $1,21,0$ (North, Phillips \& Mathews, 1968). The minimum and maximum transmission factors were 0.97 and 0.99 , respectively. The structure was solved by direct methods using MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). Full-matrix least-squares refinement was carried out on positional and anisotropic thermal parameters of non- H atoms over 2924 reflections. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)$, where $w=1 / \sigma^{2}(F)$ from counting statistics. Positions of the H atoms were all

Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$, and hydrogen-bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O}(7)$	$2 \cdot 321$ (3)	$\mathrm{N}(3)-\mathrm{C}(11)$	1.515 (4)
$\mathrm{Cu}-\mathrm{N}(1)$	1.950 (3)	$\mathrm{N}(4)-\mathrm{C}(14)$	1.269 (5)
$\mathrm{Cu}-\mathrm{N}(2)$	1.985 (3)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.483 (5)
$\mathrm{Cu}-\mathrm{N}(3)$	2.000 (3)	$\mathrm{C}(1)-\mathrm{C}(3)$	1.530 (5)
$\mathrm{Cu}-\mathrm{N}(4)$	1.955 (3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.529 (5)
$\mathrm{Cl}-\mathrm{O}(3)$	1.423 (3)	$\mathrm{C}(3)-\mathrm{C}(5)$	1.538 (5)
$\mathrm{Cl}-\mathrm{O}(4)$	1.401 (3)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.536 (5)
$\mathrm{Cl}-\mathrm{O}(5)$	1.416 (3)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.543 (4)
$\mathrm{Cl}-\mathrm{O}(6)$	1.420 (3)	$\mathrm{C}(7)-\mathrm{C}(9)$	1.537 (5)
$\mathrm{O}(1)-\mathrm{N}(1)$	1.370 (3)	$\mathrm{C}(7)-\mathrm{C}(10)$	1.531 (5)
$\mathrm{O}(2)-\mathrm{N}(4)$	1.379 (3)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.523 (6)
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 274$ (5)	$\mathrm{C}(11)-\mathrm{C}(13)$	1.528 (5)
$\mathrm{N}(2)-\mathrm{C}(3)$	1.504 (4)	$\mathrm{C}(11)-\mathrm{C}(14)$	1.542 (5)
$\mathrm{N}(2)-\mathrm{C}(6)$	1.488 (4)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.498 (5)
$\mathrm{N}(3)-\mathrm{C}(10)$	$1 \cdot 502$ (4)		
$\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(1)$	$95 \cdot 1$ (1)	$\mathrm{O}(2)-\mathrm{N}(4)-\mathrm{C}(14)$	117.9 (3)
$\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(2)$	96.7 (1)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	124.6 (3)
$\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(3)$	97.5 (1)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	116.3 (3)
$\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(4)$	94.1 (1)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	119.1 (3)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	81.0 (1)	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(1)$	$106 \cdot 6$ (3)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$	$167 \cdot 3$ (1)	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.5 (3)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(4)$	98.1 (1)	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	112.2 (3)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(3)$	98.6 (1)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	111.5 (3)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(4)$	169.1 (1)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(5)$	108.1 (3)
$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(4)$	79.9 (1)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	109.9 (3)
$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(4)$	$109 \cdot 3$ (2)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	112.4 (3)
$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(5)$	109.4 (2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$105 \cdot 4$ (3)
$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(6)$	$109 \cdot 1$ (2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	111.1 (3)
$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}(5)$	108.9 (2)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	113.3 (3)
$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}(6)$	109.1 (2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	109.1 (3)
$\mathrm{O}(5)-\mathrm{Cl}-\mathrm{O}(6)$	111.0 (2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	104.7 (3)
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{O}(1)$	$121 \cdot 3$ (2)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	112.7 (3)
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$	117.8 (2)	$\mathrm{N}(3)-\mathrm{C}(10)-\mathrm{C}(7)$	113.7 (3)
$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$120 \cdot 6$ (3)	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	112.1 (3)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(3)$	111.0 (2)	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(13)$	110.1 (3)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(6)$	$115 \cdot 6$ (2)	$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(14)$	$106 \cdot 0$ (3)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(6)$	$115 \cdot 4$ (2)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	109.1 (3)
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(10)$	117.4 (2)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	108.0 (3)
$\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(11)$	111.1 (2)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	111.4 (3)
$\mathrm{C}(10)-\mathrm{N}(3)-\mathrm{C}(11)$	114.5 (3)	$\mathrm{N}(4)-\mathrm{C}(14)-\mathrm{C}(11)$	115.4 (3)
$\mathrm{Cu}-\mathrm{N}(4)-\mathrm{O}(2)$	$122 \cdot 2$ (2)	$\mathrm{N}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	124.4 (3)
$\mathrm{Cu}-\mathrm{N}(4)-\mathrm{C}(14)$	119.2 (2)	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(15)$	120.1 (3)
		$\mathrm{O} \cdots \mathrm{O}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$
$\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 21) \cdots \mathrm{O}(1)$		2.509 (5)	176.7 (1)
$\mathrm{O}(7)-\mathrm{H}(\mathrm{O} 72) \cdots \mathrm{O}(1)^{\text {i }}$		2.751 (5)	176.1 (1)
$\mathrm{O}(7)-\mathrm{H}(\mathrm{O} 71) \cdots \mathrm{O}(3)$		2.935 (5)	150.0 (1)

located from the difference Fourier map, and were not refined. The B values of the H atoms were initially assigned as $5 \cdot 0 \AA^{2}$ and refined. In the last stage of least-squares calculation, the $R(F)$ factor reduced to $0.035, \mathrm{GOF}=2.90,(\Delta \rho)_{\max }=0.39 \mathrm{e} \AA^{-3}$, $(\Delta / \sigma)_{\max }=0.01$. Atomic scattering factors were from International Tables for X-ray Crystallography (1974, Vol. IV).

Discussion. Table 1 lists atomic coordinates and Table 2 bond lengths and angles.* A perspective view

[^0]Table 3. Selected bond lengths (\AA) and bond angles $\left(^{\circ}\right)$ for $\mathrm{Cu}^{\mathrm{II}}$-diaminedioxime complexes

	(I)	(II)	(III)	(IV)	(V)
$\mathrm{Cu}-\mathrm{N}$ (amine)	1.979	1.99 (1)	1.985 (3)	2.036 (4)	2.038 (4)
	2.012	1.99 (1)	2.000 (3)	2.047 (3)	2.029 (4)
$\mathrm{Cu}-\mathrm{N}$ (oxime)	1.938	1.96 (1)	1.950 (3)	1.958 (4)	1.950 (4)
	1.944	1.96 (1)	1.955 (3)	1.986 (4)	1.967 (4)
$\mathrm{Cu}-\mathrm{O}$ (apical)	$2 \cdot 185$ (4)	$2 \cdot 40$ (1)	2.321 (3)	$2 \cdot 287$ (4)	$2 \cdot 300$ (4)
O..0	$2 \cdot 698$ (6)	$2 \cdot 46$ (2)	$2 \cdot 509$ (5)	$2 \cdot 421$ (5)	2.531 (5)
$\mathrm{O} \cdots \mathrm{H}$	1.95	1.23 (2)	1.451 (3)	1.437 (3)	1.695
O-H	0.75	1.23 (2)	1.058 (2)	0.991	0.840
N (amine)- $\mathrm{Cu}-\mathrm{N}$ (amine)	87.8 (2)	96.3 (6)	98.6 (1)	104.6 (2)	106.7 (2)
N (amine) - $\mathrm{Cu}-\mathrm{N}$ (oxime)	$83 \cdot 1$ (2)	81.4 (5)	79.9 (1)	79.6 (2)	79.9 (2)
	82.0 (2)	81.4 (5)	81.0 (1)	$80 \cdot 3$ (2)	78.6 (2)

Notes: (I) $\left[\mathrm{Cu}(E n A O-H)_{2}\right]\left(\mathrm{ClO}_{4}\right]_{2}$ (Gavel \& Schlemper, 1979); (II) $[\mathrm{Cu}(\mathrm{PnAO}-\mathrm{H})]\left(\mathrm{ReO}_{4}\right)$ (Liss \& Schlemper, 1975); (III) $\left[\mathrm{Cu}(6,6-\mathrm{Me} 2-\mathrm{PnAO}-\mathrm{H})\left(\mathrm{H}_{2} \mathrm{O}\right)\right](\mathrm{ClO} 4)$ (this work); (IV) $\left[\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)\left(\mathrm{Pal}\right.$ et al., 1986); (V) $\left[\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{Pal}$ et al., 1986).

Fig. 1. Perspective view showing the atom-numbering scheme (Johnson, 1976); the hydrogens at the chiral centres are plotted as plain circles, the other atoms as shaded spheres. A neighbouring molecule with symmetry code $2-x, 1-y,-z$ is also plotted to indicate the intermolecular hydrogen bonding. Displacements of four donor N atoms and $\mathrm{Cu}^{1 \mathrm{I}}$ from the best plane of the four N atoms are also indicated. The e.s.d.'s of the displacements for the N atoms are $0.004 \AA$. The oxime and amine hydrogens are plotted as plain circles.
of two neighbouring molecules with deviation of $\mathrm{Cu}^{\mathrm{II}}$ and donor atoms from the diaminedioxime plane is shown in Fig. 1. A stereoscopic view of molecules packed in a unit cell is plotted in Fig. 2.
The copper coordination is slightly distorted square pyramidal with the deprotonated diazadioxime equatorial and the O atom of the aqua group axial as shown in Fig.1. The four donor N atoms of the diazadioxime lie almost in a plane with maximum deviation of $0.017 \AA$; the $\mathrm{Cu}^{\mathrm{II}}$ atom is significantly $(0 \cdot 202 \AA)$ out of this plane towards the aqua group. The two H atoms of the amine groups are on the same side; however, the aqua group is on the other side of this plane. The configuration of the two chiral N centres is $4 R S$ and $8 S R$. The central six-membered chelate ring is in a stable chair conformation, and both terminal five-membered rings are in a stable gauche conformation. The axial aqua O atom forms inter- and intramolecular hydrogen bonds with the oxime and perchlorate O atoms as

o8

Fig. 2. A stereoscopic view, showing how the molecules are packed in a unit cell.
shown in Fig. 1. The hydrogen-bond distances and angles are listed in Table 2.

In addition to this complex, the X-ray crystal structures of copper(II) complexes of a few deprotonated tetradentate diaminedioximes, $[\{\mathrm{Cu}(\mathrm{EnAO}-$ $\left.\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (EnAO: 3,3,8,8-tetramethyl-4,7-diaza-decane-2,9-dione dioxime) (Gavel \& Schlemper, 1979), $[\mathrm{Cu}(\mathrm{PnAO}-\mathrm{H})]\left(\mathrm{ReO}_{4}\right)(\mathrm{PnAO}: 3,3,9,9-$ tetra-methyl-4,8-diazaundecane-2,10-dione dioxime) (Liss \& Schlemper, 1975), $\left[\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{ClO}_{4}$ and $\left[\{\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad(\mathrm{BnAO}: 3,3,10,10$-tetra-methyl-4,9-diazadodecane-2,11-dione dioxime) (Pal et al., 1986), have previously been reported. Some selected structural data for these complexes are listed in Table 3. It is interesting to note that all of these complexes are five-coordinate distorted squarepyramidal copper(II) complexes with the deprotonated diaminedioxime equatorial. As listed in this table, the $\mathrm{N}-\mathrm{M}-\mathrm{N}$ angles in these complexes are distorted significantly from ideal square-planar values. The N (amine)- $M-\mathrm{N}$ (amine) angle increases in the order $\left[\{\mathrm{Cu}(\mathrm{EnAO}-\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ $<[\mathrm{Cu}(\mathrm{PnAO}-\mathrm{H})]\left(\mathrm{ReO}_{4}\right)<\left[\mathrm{Cu}\left(6,6-\mathrm{Me}_{2}-\mathrm{PnAO}-\mathrm{H}\right)-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)<\left[\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right) \quad$ and $\left[\{\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$; the average $\mathrm{N}($ amine $)-$
$M-\mathrm{N}$ (oxime) angle decreases in the order $\left[\{\mathrm{Cu}(\mathrm{EnAO}-\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}>[\mathrm{Cu}(\mathrm{PnAO}-\mathrm{H})]\left(\mathrm{ReO}_{4}\right)>$ $\left[\mathrm{Cu}\left(6,6-\mathrm{Me}_{2}-\mathrm{PnAO}-\mathrm{H}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)>[\mathrm{Cu}(\mathrm{BnAOH})-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)$ and $\left[\{\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$. This is related to two factors: (1) the size of the central chelate ring and (2) the number of the C-methyl groups of the central chelate ring. Generally, the N (amine) $-\mathrm{M}-\mathrm{N}$ (amine) angle increases and the average N (amine)- $M-\mathrm{N}$ (oxime) angle decreases as the size of the central chelate ring increases and as the number of the C-methyl groups of the central ring increases. The average $M-\mathrm{N}$ (amine) bond distance is slightly longer than the average M - N (oxime) bond distance. It is significant to note that the $M-\mathrm{N}$ (amine) bond distances of these complexes are shorter than those of the analogous copper(II) complexes of tetraamines (Fawcett, Rudich, Toby, Lalancette, Potenza \& Schuger, 1980). The $\mathrm{O} \cdots \mathrm{O}$ distance increases in the order: $\left[\mathrm{Cu}(\mathrm{BnAO}-\mathrm{H})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)<[\mathrm{Cu}(\mathrm{PnAO}-\mathrm{H})]\left(\mathrm{ReO}_{4}\right)$ $<\left[\mathrm{Cu}\left(6,6-\mathrm{Me}_{2}-\mathrm{PnAO}-\mathrm{H}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)<[\{\mathrm{Cu}(\mathrm{BnA}-$ $\left.\mathrm{OH})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}<\left[\{\mathrm{Cu}(\mathrm{EnAO}-\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$. As pointed out by Pal et al. (1986) there are two factors which tend to elongate the $\mathrm{O} \cdots \mathrm{O}$ separation: (1) the constraint caused by the diaminedioxime ligand in the complex and (2) dimerization through a hydrogen-bonded oxime oxygen of copper(II). The constraint due to the C -methyl groups in $[\mathrm{Cu}$ ($\left.\left.6,6-\mathrm{Me}_{2}-\mathrm{PnAO}-\mathrm{H}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)$ contributes to the elongation of the $\mathrm{O} \cdots \mathrm{O}$ distance; therefore, the $\mathrm{O} \cdots \mathrm{O}$ distance in $\left[\mathrm{Cu}\left(6,6-\mathrm{Me}_{2}-\mathrm{PnAO}-\mathrm{H}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)$ is larger than that in $[\mathrm{Cu}(\mathrm{PnAO}-\mathrm{H})]\left(\mathrm{ReO}_{4}\right)$. Among
these complexes the constraint imposed by the ethylene bridge in EnAO-H is the largest (Pal et al., 1986); consequently, the $\mathrm{O} \cdots \mathrm{O}$ distance in $[\{\mathrm{Cu}($ EnAO$\left.\mathrm{H})\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ is larger than that in any other complex.

The authors thank Professor E. J. Gabe and coworker in the Chemistry Division, NRC, Canada, for their provision of the VAX Crystal Structure System. We also thank the National Science Council of Taiwan for the financial support of this work.

References

Fawcett, T. G., Rudich, S. M., Toby, B. H., Lalancette, R. A., Potenza, J. A. \& Schuger, H. J. (1980). Inorg. Chem. 19, 940-945.
Gavel, D. P. \& Schlemper, E. O. (1979). Inorg. Chem. 18, 283-286.
JOhnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liss, I. B. \& Schlemper, E. O. (1975). Inorg. Chem. 14, 30353039.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Murmann, R. K. (1957). J. Am. Chem. Soc. 79, 521-526.
Murmann, R. K. (1958). J. Am. Chem. Soc. 80, 4174-4180.
North, A. C. T., Phillips, D. C. \& Matthews, F. S. (1968). Acta Cryst. A24, 351-359.
Pal, J., Murmann, R. K., Schlemper, E. O., Fair, C. K. \& Hussain, M. S. (1986). Inorg. Chim. Acta, 115, 153-161.
Vassian, E. G. \& Murmann, R. K. (1967). Inorg. Chem. 6, 2043-2046.

Acta Cryst. (1990). C46, 2363-2366

Structure of $\left[\mathbf{P}_{(}\left(\mathbf{C H}_{3}\right)_{4}\right]_{2} \mathbf{C u B r}_{4}$ at 293 K

By G. Madariaga, M. M. Alberdi and F. J. Zúñiga
Dpto. de Física de la Materia Condensada, Facultad de Ciencias, Universidad del Pais Vasco, Apdo. 644, Bilbao, Spain

(Received 12 March 1990; accepted 11 April 1990)

Abstract

Tetramethylphosphonium tetrabromocuprate(II), $\left[\mathrm{P}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{CuBr}_{4}, M_{r}=565 \cdot 08 \text {, monoclinic, }}^{\text {, }}\right.$ $P 2_{1} / b 11, \quad a=9.493$ (2),$\quad b=31.673$ (1), $\quad c=$ 13.046 (1) $\AA, \alpha=90.17(2)^{\circ}, V=3922.5 \AA^{3}, \quad Z=8$, $D_{m}=1.909(3), \quad D_{x}=1.911 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=$ $0.7107 \AA, \quad \mu=9.874 \mathrm{~mm}^{-1}, \quad F(000)=2168, \quad T=$ $293 \mathrm{~K}, R=0.064$ for 2368 unique observed reflections. Differential scanning calorimetry showed two phase transitions at 193 and 404 K , respectively. The space group, Pmcn, and the cell parameters of the

high-temperature phase have also been determined by X-ray precession photographs. The monoclinic structure can be described as a commensurate distortion (with wave vector $q=1 / 2 \mathbf{b}_{0}^{*}$) of the orthorhombic phase.

Introduction. Compounds belonging to the $A_{2} B X_{4}$ family have been exhaustively studied in the last few years. The main reason is the rich variety of commensurate and incommensurate (IC) phases pre© 1990 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53216 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

